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Abstract

An efficient Monte Carlo method for the calculation of radiative transfer in complex geometry systems including semi-transparent
media has been achieved and validated. This method, which is based on the reciprocity principle and called optimized reciprocity method
(ORM), can be applied to systems discretized in a large number of cells. For each pair of elementary cells exchanging radiative energy,
the transfer calculation is carried out by minimizing, for a given computational time, the standard deviation of the radiative power or of
the wall flux. The results obtained with ORM have been successfully compared to those obtained with previous approaches in a numer-
ical benchmark.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The idea to use the Monte Carlo method to calculate
radiative transfer in participating media is old [1–6] but
the use of this method becomes common [7] due to the
increase of computer power.

In many papers [8–11], the Monte Carlo method is only
used as a reference to validate other conventional discre-
tization methods. Nowadays it is used directly to solve
problems including complex physics, such as turbulence-
radiation interaction [12–14], scattering [15], polarized
radiative transfer [16,17] or complex geometry, sometimes
in conjunction with deterministic methods [18,19].

Many techniques of variance reduction have been devel-
oped in order to reduce the computation time [20–23]. One
of these techniques consists in using the radiation reciproc-
ity principle, either from the geometrical point of view only
[24–27] or from both geometrical and energetical points
of view [28–34]. Paper [30] deals with two reciprocal
approaches which have specific application fields. The
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emission reciprocity method (ERM) is designed to limit
the calculation to the only part of the domain where the
solution is sought. This method is also well adapted to cal-
culate the radiative power or flux in zones where the tem-
perature is high. On the other hand, the absorption
reciprocity method (ARM) is well adapted for low temper-
ature zones but requires a calculation over the complete
domain. These methods are in particular more efficient
than the conventional forward Monte Carlo Method
(FM) in case of large optical thickness or weak temperature
gradient. However, in current cases of moderate optical
thickness and high temperature gradients (radiating com-
bustion gases, for instance) none of the three methods give
the lowest standard deviation in the whole calculation
domain. In particular, the suitable method to calculate wall
fluxes is in general different from the one adapted to calcu-
late radiative powers [30].

The aim of the present work is to develop and validate
an optimized hybrid approach able to give good results,
for wall fluxes and radiative powers, in media of various
optical thicknesses. This optimized reciprocity method
(ORM) is obtained by selecting, for each power exchange
between two cells (elementary volumes or surfaces), the
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Nomenclature

Amqj fraction of power emitted from cell q that is
absorbed in cell j (non-dimensional)

i cell index
j index of a cell exchanging power with the refer-

ence cell q
I0m equilibrium (or blackbody) spectral intensity

(Wm�2 (cm�1)�1 sr�1)
K proportionality constant ((W/cm�1)�1)
Lw distance between the walls in the test cases (m)
N total number of optical paths
Ncalc number of independent calculations used to esti-

mate the standard deviation in the test cases
NS number of elementary surfaces in the system
NV number of elementary volumes in the system
Nx number of cells in x direction (i.e. between the

walls) in the test cases
Nmq number of optical paths originating from cell q

at wavenumber m
Pq(i) probability that a fraction of the power emitted

from cell q is absorbed in cell i
Pq total radiative power in cell q (W)

P exch
qj total power exchanged between cells q and j (W)

P exch
mqj spectral power exchanged between cells q and j

(W/cm�1)
PERM
mqj spectral power exchanged between cells q and j

involved in the calculation of Pq with the emis-
sion reciprocity method (W/cm�1)

PARM
mqj spectral power exchanged between cells q and j

involved in the calculation of Pq with the
absorption reciprocity method (W/cm�1)

q index of the reference cell

Sq elementary surface q

Tc temperature at the center of the medium in the
test cases (K)

Tw wall temperature in the test cases (K)
Vq elementary volume q

x spatial coordinate along the direction ortho-
gonal to the walls

X(i) crenel function applied to cell i

Greek symbols
amjc spectral absorptivity for the cth crossing of cell j

(non-dimensional)
eg equivalent total emissivity of the medium in the

test cases (non-dimensional)
ew gray emissivity of the walls in the test cases

(non-dimensional)
emi spectral emissivity of surface i (non-dimen-

sional)
jmq spectral absorption coefficient in cell q (m�1)
m wavenumber (cm�1)
r(Q) standard deviation of quantity Q

sm spectral transmissivity (non-dimensional)

Subscript

w refers to a wall

Notationfð Þ Monte Carlo statistical estimation (average over
the contributions of the optical paths)
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reciprocal method giving the lowest standard deviation for
this exchange.

ORM is detailed in Section 2. Results of benchmark cal-
culations obtained from ERM, ARM, FM and ORM are
compared and discussed in Section 3.

2. Optimized reciprocity method (ORM)

A general reciprocity Monte Carlo method requires the
stochastic calculation of all quantities P exch

ij , the total radi-
ative powers exchanged between any couple (i, j) of elemen-
tary cells in the system. These cells are volume or surface
elements resulting from a geometrical discretization. At
present, this general approach is not suitable for systems
of complex geometries discretized in a large number of cells
for two reasons: (i) for a standard 3D calculation, the
required computing storage, proportional to the number
of cells squared, would be too large; (ii) the number of opti-
cal paths joining two cells would be generally too small to
obtain an accurate enough value of the exchanged power.
Consequently, we do not consider here this general
approach, but methods such as the emission reciprocity
method (ERM) and the absorption reciprocity method
(ARM) [30], in which the radiative power in a given cell
q is obtained directly without accurate calculation and stor-
age of all P exch

qj , where j is the index of each cell exchanging
with q. Before detailing the optimized reciprocity method
(ORM), a brief outline of ERM and ARM is given
hereafter.

The total radiative power Pq in a cell q is obtained by
summing up powers P exch

qj exchanged between this cell and
all surrounding cells j:

Pq ¼
XNVþNS

j¼1

P exch
qj ¼ �

XNVþNS

j¼1

P exch
jq . ð1Þ

In this equation, NS and NV stand for the number of ele-
mentary surfaces and volumes, respectively. Hereafter,
only exchanges between elementary volumes Vq and Vj

are detailed; exchanges between elementary surfaces or
between elementary surface and volume are treated in
Appendix A.
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The total exchanged power P exch
qj is given by

P exch
qj ¼

Z þ1

0

P exch
mqj dm; ð2Þ

where m is the wavenumber and P exch
mqj the spectral exchanged

power given by

P exch
mqj ¼ 4pV qjmq I0mj � I0mq

� �
Amqj. ð3Þ

Quantity jmq is the spectral absorption coefficient in cell q
and I0mq the equilibrium spectral intensity in the cell q.
P exch
mqj is strictly equal to zero when I0mj and I0mq are equal.

According to Eq. (5) of Ref. [30], Amqj is defined by

Amqj ¼
1

4pV q

Z
V q

Z
4p

XNp

c¼1

sm BF cð Þamjc dXq dV q. ð4Þ

Index c (c = 1, . . . ,Np) relates to the serial number of cross-
ings of cell j by a given optical path issued from cell q, tak-
ing into account reflections on the walls. Quantity sm (BFc)
is the spectral global transmission factor, taking into ac-
count possible wall reflections, between the source point
B in cell q and Fc, the cth inlet point in cell j of a given opti-
cal path, as shown in Fig. 1 of Ref. [30]. Quantity amjc is the
spectral absorptivity corresponding to the cth crossing of
cell j. In these circumstances, Amqj is the fraction of the
spectral power emitted from cell q, i.e. 4pV qjmqI0mq, that is
absorbed in cell j. It is the only quantity that must be
stochastically calculated in the expression of P exch

mqj .
In Monte Carlo methods, the stochastically generated

optical paths are associated with the emission of radiative
energy from the origin cell and the absorption of a part
of this energy in an arrival cell. ERM derives from the first
equality in Eq. (1). Forward optical paths issued from the
considered cell q and reverse optical paths issued from all
crossed cells j are considered, as shown in Fig. 3 of Ref.
[30], to give the stochastic estimation eAmqj of Amqj. Here-
after, all stochastic estimations of the physical quantities
are noted with a tilde. Therefore, the spectral power
exchanged between cells q and j and involved in the calcu-
lation of Pq with ERM writes

eP ERM

mqj ¼ 4pV qjmq I0mj � I0mq
� �eAmqj. ð5Þ

On the other hand, in ARM which derives from the second
equality in Eq. (1), forward optical paths issued from all
cells j and crossing the considered cell q and reverse optical
paths issued from cell q are used as shown in Fig. 4 of Ref.
[30]. Consequently, the spectral power exchanged between
cells q and j and involved in the calculation of Pq with
ARM writeseP ARM

mqj ¼ 4pV jjmj I0mj � I0mq
� �eAmjq. ð6Þ

It is worth noticing that, in the limit case of large numbers,
the following equation expressing the reciprocity principle
can be derived from Eqs. (5) and (6):

jmqV qAmqj ¼ jmjV jAmjq. ð7Þ
The optimization of the radiative power calculation in a
given cell q can be obtained by an optimization of the cal-
culation of each power exchange between the cell q and any
current cell j of the domain. In ORM, each power exchange
is calculated with the best approach between ARM and
ERM, i.e. the approach that leads to the lowest standard
deviation of its stochastic estimation. Because of the (i)
and (ii) given in the beginning of this Section, all these stan-
dard deviations cannot be calculated accurately and stored
but their mathematical expressions can be compared. From
Eqs. (5), (6), it results that the standard deviations of the
two methods are given by

r eP ERM

mqj

� �
¼ 4pV qjmq I0mj � I0mq

��� ���r eAmqj

� �
; ð8Þ

r eP ARM

mqj

� �
¼ 4pV jjmj I0mj � I0mq

��� ���r eAmjq

� �
. ð9Þ

In these equations, r(Q) stands for the standard deviation
of quantity Q.

In terms of probability, Amqj can be written as the follow-
ing mathematical expectation:

Amqj ¼
XNVþNS

i¼1

X ið ÞPq ið Þ; ð10Þ

where NV + NS is the total number of cells, Pq (i) is the
probability that a fraction of the power emitted from cell
q is absorbed in cell i and X is a function of index i defined
as follows: X(i) = 1 if i = j, X(i) = 0 if i 5 j. In other words,
Amqj is equal to Pq(j). The standard deviation of the func-
tion X of which Amqj is the mathematical expectation is
given by

r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNVþNS

i¼1

X ið Þ � Amqj

� �2
Pq ið Þ

vuut . ð11Þ

Using the definition of function X, the fact that Pq(j) is
equal to Amqj and that the sum

P
iP qðiÞ is equal to 1, it

comes

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amqj 1� Amqj

� �q
. ð12Þ

By assuming that Amqj is small compared to 1, which is true
in particular if cell j is optically thin, the previous standard
deviation writes

r0 ¼
ffiffiffiffiffiffiffiffi
Amqj

p
. ð13Þ

The stochastic estimation eAmqj of Amqj is obtained by averag-
ing the numerical results over a large number of optical
paths which are generated from q, independently, with
the same probability law. According to the central limit
theorem, the standard deviation of this stochastic estima-
tion is given by

r eAmqj

� �
¼ r0ffiffiffiffiffiffiffi

N mq

p ¼
ffiffiffiffiffiffiffiffi
Amqj

N mq

s
; ð14Þ

where Nmq is the number of optical paths originating from
cell q at wavenumber m. If the most common method, called
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non-uniform distribution method (NUD) is used (see [30]),
the number Nmq is proportional to the spectral power emit-
ted from cell q. When q is a volume, Nmq is then equal
to 4pjmqV qI0mqK, where K is a proportionality constant inde-
pendent of index q. From this relation and from Eqs. (14)
and (8), it comes

r eP ERM

mqj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pV qjmqAmqj

p
I0mj � I0mq

��� ���ffiffiffiffiffiffiffiffiffi
KI0mq

q . ð15Þ

In the same way, Eq. (9) yields

r eP ARM

mqj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pV jjmjAmjq

p
I0mj � I0mq

��� ���ffiffiffiffiffiffiffiffi
KI0mj

q . ð16Þ

Taking into account Eq. (7), the ratio of these standard
deviations writes

r eP ERM

mqj

� �
r eP ARM

mqj

� � ¼

ffiffiffiffiffiffi
I0mj
I0mq

vuut . ð17Þ

From this equation, it results that the lowest standard devi-
ation is obtained with ERM when temperature Tq in cell q
is larger than temperature Tj in cell j and with ARM in the
opposite case. Therefore, the spectral exchanged power
P exch
mqj , involved in the calculation of Pq, is calculated with

ERM when Tq is larger than Tj and from the ARM in
the opposite case. Note that the criterion for the ERM-
ARM selection is not rigorous when one of the cells is
not optically thin but in this case the numerical tests will
assess the method.
3. Results and discussion

The ORM is validated by comparison with the ERM,
ARM and FM in the same benchmark as in Ref. [30].
Two parallel infinite opaque walls separated by a non-iso-
thermal emitting and absorbing medium are considered.
The local radiative power depends only on the spatial coor-
dinate x along the direction orthogonal to the walls and is
given, as well as fluxes on the walls, by well-known analyt-
ical expressions (see [35], Eq. (VII.110) or [36]) which will
be taken as reference solutions. Of course, even if the fields
Table 1
Benchmark cases

Case 1 Case 2 Case 3 Case 4

jLw 2 0.1 5 40
Lw (m) 0.2 0.2 0.2 0.2
eg 0.86 0.10 0.99 1
ew 0.8 0.8 0.8 0.8
Tc (K) 2500 2500 2500 2500
Tw (K) 500 500 500 500
Nx (Ncalc) 20(400) 20(400) 20(400) 20(400)
N · 10�6 1 0.2 1.44 7
t (s) �400 �400 �400 �400
are 1D, the optical paths are calculated in the 3D physical
space and the infinite character of the transverse dimen-
sions is simulated by total specular reflection conditions
on the boundaries parallel to the x axis.

Eight cases corresponding to different temperature pro-
files and different wall or medium absorption conditions
have been treated. These cases are summarized in Table
1, in which the values of the distance Lw between the walls
and of the wall emissivity ew are given. In all cases, the tem-
perature profile T(x) has a symmetric parabolic shape but
different values of Tc, the temperature of the medium cen-
ter, and Tw, the wall temperature, have been considered.
The distance between the walls is discretized in Nx = 20
small intervals. The number N of optical paths has been
adjusted for each case in order to obtain the same calcula-
tion time of 400 s with a single SGI R12000 processor. This
number, which depends on the global optical thickness, is
given in Table 1. The computations have been split into
Ncalc = 400 independent calculations of the whole domain
in order to determine the standard deviation of the numer-
ical results including local radiative power and wall fluxes.
Table 1 gives also the global optical thickness jLw for each
case involving a gray medium and the total emissivity eg of
the medium obtained with the Hottel charts [37] for the
cases involving actual gases, here modeled by a CK
approach. For these cases, the first and the second values
of eg correspond to the total emissivities of the whole med-
ium assumed to be isothermal, respectively at Tc and Tw.
Table 2 gives the calculated wall fluxes for all the cases.
Values in parentheses are the standard deviations.

All the comparisons regard the standard deviation for a
given computation time. Since the standard deviation
decreases as the square root of the optical path number,
the ratio of the computation times of two different methods
for a given calculation accuracy is equal to the square of the
ratio of their standard deviations obtained in the above-
mentioned conditions. Consequently this ratio strongly
depends on the considered spatial cell.

3.1. Case of a gray medium

Although no actual medium is gray, the gray assump-
tion is useful since it allows the optical thickness of a
medium to be accurately controlled.
Case5 Case 6 Case 7 Case 8

2 2 Actual gases Actual gases
0.2 0.2 0.2 4
0.86 0.86 0.03–0.15 0.19–0.50
0.8 0.8 1 1
500 300 2500 2500
2500 290 500 500
20(400) 20(400) 20(400) 20(400)
1 1 1 1.8
�400 �400 �400 �400
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Fig. 1. Mean radiative power profile and standard deviation in case 1.

Table 2
Mean radiative fluxes on the walls (standard deviations in parentheses)

Reference FM ERM ARM ORM

Case 1 (kW/m2) 560.5 554.9 (17.5) 562.0 (123) 554.9 (17.4) 554.9 (17.4)
Case 2 (kW/m2) 159.9 159.6 (5.53) 159.8 (42.4) 159.7 (5.51) 159.8 (5.51)
Case 3 (kW/m2) 294.5 294.5 (12.9) 290.6 (133) 294.5 (12.7) 294.5 (12.7)
Case 4 (kW/m2) 11.20 13.84 (5.40) 11.03 (4.00) 11.03 (4.00)
Case 5 (kW/m2) �1306 �1310 (18.4) �1305 (4.02) �1293 (245) �1305 (4.02)
Case 6 (W/m2) 24.26 21.54 (11.8) 24.22 (0.27) 24.05 (0.87) 24.22 (0.27)
Case 7 (kW/m2) 54.04 53.99 (2.33) 51.47 (58.7) 53.99 (2.28) 53.99 (2.28)
Case 8 (kW/m2) 195.9 195.6 (11.9) 234.0 (1842) 195.6 (11.8) 195.7 (11.9)
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Cases 1–4 are related to cold walls separated by a hot
medium and differ from one another in optical thickness.
In case 1, which corresponds to a global optical thickness
equal to 2, the radiative power profiles obtained with the
four methods are in good agreement with the reference
solution as shown in Fig. 1. The lowest standard deviation
is obtained with ORM. Concerning the wall fluxes, the
standard deviations obtained with ORM, ARM and FM
are equal and low. ERM leads to a much larger confidence
interval. The similarity of the wall fluxes given by ARM
and ORM arises from the fact that, in an energy exchange
between a wall elementary surface and an elementary vol-
ume of high temperature, the ARM contribution is chosen
to calculate the wall flux with ORM. Moreover, the power
received by a wall surface is calculated in the same way for
FM and ARM. The emitted power is not identically calcu-
lated in both methods but, since this emitted power is low,
because of the locally low temperature, FM, ARM and
consequently ORM give similar results on the walls.

Case 2 corresponds to a low optical thickness of 0.1.
Fig. 2 shows that ORM is the best of the reciprocity meth-
ods for the radiative power but FM leads to the lowest
standard deviation. It has already been shown in Ref.
[30] that a medium of low optical thickness with strong
temperature gradients is not favorable to global reciprocity
methods. However, even in these unfavorable circum-
stances, ORM can be considered as satisfactory. ERM
gives no value for x = 0.5 cm and x = 19.5 cm. Indeed,
the power emitted by the cells close to the walls is small
because of both low temperature and optical thickness.
Since, in the NUD approach, optical paths are distributed
in cells according to the emitted power, no optical path is
generated from the cells close to the walls. For the wall
flux, the conclusion is the same as in case 1, with good
results obtained with ORM, ARM and FM.

Case 3 corresponds to an optical thickness of 5. For
both radiative power and wall flux, ORM is the most accu-
rate as shown in Fig. 3 and Table 2. The standard deviation
obtained with ARM is now smaller than the one obtained
with FM in the center of the medium. As in case 1, near the
walls, the standard deviation obtained with ERM becomes
very high while FM and ARM have the same behavior as
ORM. Concerning the flux on the walls, ARM and ORM
give the same value with the same lowest standard devia-
tion, in very good agreement with the reference value.
FM gives almost the same value with a slightly higher stan-
dard deviation. The value given by ERM is too low and its
standard deviation is much higher than with the other
methods.

Case 4 deals with a very high optical thickness of 40.
The radiative powers and the wall flux calculated by FM
are not satisfactory as shown in Fig. 4 and Table 2. Indeed,
when the optical thickness is very high, only neighboring
cells exchange energy. Therefore, the energy transfer
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Fig. 2. Mean radiative power profile and standard deviation in case 2.
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Fig. 3. Mean radiative power profile and standard deviation in case 3.
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involves cells of similar temperature and in that case reci-
procity methods are much more efficient than FM. The
standard deviations for ERM and ARM have the same
order of magnitude except near the walls where ARM
works better. The lowest standard deviation is everywhere
obtained with ORM. Due to the strong absorption in
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elementary volumes, each optical path is very short and the
calculation of the corresponding trajectory requires a small
computation time. Therefore, for a same computation
time, the number of tracked optical paths is much larger
in that case than in the other cases (see Table 1). On the
other hand, optical paths that do not leave the origin cell
do not contribute to the results. In the NUD approach con-
sidered here, all the optical paths are issued from volume
elements. Consequently, ERM does not give results related
to the wall flux. For the wall flux, as in case 3, ARM and
ORM give exactly the same results and work a little better
than FM.

Case 5 is similar to case 1 concerning the optical thick-
ness but the temperature profile has been changed to give a
cold central medium and hot walls. ORM and FM lead to
the best results for the radiative power as shown in Fig. 5.
With regard to the wall flux, ORM gives the best results
together with ERM, insofar as the exchange between a
hot wall element and an elementary volume is calculated
here in the same way in ORM and ERM.
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Fig. 5. Mean radiative power profile
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In case 6, the temperature gradients are small and the
optical thickness is the same as in case 1. This case is favor-
able to reciprocity methods because the energy is
exchanged between cells of similar temperatures as for
the optically thick medium of case 4. Consequently, FM
leads to poor results as shown in Fig. 6 and Table 2. The
radiative powers obtained with ORM are more accurate
than those obtained with ERM and similar to those calcu-
lated by ARM. For the wall flux, ORM and ERM give the
best results.

3.2. Case of a real gas

Case 7 is related to real gases with the same temperature
profile and distance between the walls as in case 1. The gas
is a CO2–H2O–N2 mixture at atmospheric pressure. The
molar fractions of CO2 and H2O are respectively 0.116
and 0.155. These conditions are typical of those existing
in flames and combustion flows. Gas radiative proper-
ties are treated in a correlated manner by a CK model
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[38–41] based on the parameters taken in Ref. [42]. Accord-
ing to the values of the total emissivity eg, obtained from
Hottel charts [37] for the extreme temperatures, and given
in Table 1, case 7 corresponds to an optically thin medium
as case 2. Concerning the radiative power, ORM and FM
lead to the best results as shown in Fig. 7. ARM does
not give good results in the center of the medium and
ERM does not work well near the walls. As predicted, this
behavior is the same as in case 2. For the wall flux, ORM
leads also to the best results together with ARM and FM,
as shown in Table 2. The fact that ORM, ARM and FM
give very similar results on the walls is due to the low tem-
perature of these walls.

Case 8 is also related to real gases and differ from case 7
through the distance between the walls which is now equal
to 4 m. From the point of view of the total emissivity of the
medium, this case is intermediate between cases 2 and 1, as
shown in Table 1. For the calculation of radiative power in
this case, the conclusion of our previous paper [30] was to
use ARM near the walls and ERM in the center of the med-
ium because there was no method able to give good results
everywhere. The conclusion of this work is more satisfac-
tory since ORM gives everywhere the best results for the
radiative power, as shown in Fig. 8. Concerning the wall
flux, ORM, ARM and FM are the best approaches.

4. Conclusion

The Monte Carlo optimized reciprocity method (ORM)
for the calculation of radiative transfer in complex semi-
transparent media has been achieved and validated. The
method consists, for each exchange between two elementary
cells, in the selection of the bestmethod between the emission
reciprocity method (ERM) and the absorption reciprocity
method (ARM) developed in a previous work. A simple
criterion has been analytically obtained to control the
ERM–ARM selection. For a given computational time,
the standard deviation of the radiative power or of the wall
flux obtained by the ORM is smaller than those obtained by
othermethods (ARM, ERMand forwardmethod) in almost
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all cases of a numerical benchmark. The ratio of the compu-
tation times of two different methods for a given calculation
accuracy is equal to the square of the ratio of these standard
deviations. Consequently this ratio strongly depends on the
considered spatial cell. For a small optical thickness the
ORMperforms significantly better than theARM in the cen-
ter of the medium and much better than the ERM near the
walls. The conclusion is the same for a real gas. For a high
optical thickness, the ORM has only a slightly better behav-
ior than the ERMandARM in the center of the medium but
performsmuch better than thesemethods near thewalls. It is
worth noting that theORMleads to accurate results both for
radiative power andwall flux unlike theARM, theERMand
the forward Monte Carlo method.

Appendix A. Treatment of the power exchange in the case of

elementary surfaces

In the general case, whatever the type of the elementary
cells, volume or surface, Eqs. (5) and (6) can be rewritten aseP ERM

mqj ¼ Cq I0mj � I0mq
� �eAmqj; ð18Þ

eP ARM

mqj ¼ Cj I0mj � I0mq
� �eAmjq; ð19Þ

where Ci (i = q, j) is equal to 4pVijmi when i is an elemen-
tary volume and equal to pSiemi when i is an elementary sur-
face Si; emi is the spectral emissivity of Si; Amqj, the fraction
of the power emitted from q and absorbed in j, is given by
Eq. (4) when both cells q and j are elementary volumes.
When q is an elementary surface and j an elementary vol-
ume, Amqj becomes, with the same formalism as in Eq. (4)

Amqj ¼
1

pSq

Z
Sq

Z
2p

XNp

c¼1

sm BF cð Þamjc cos hdXq dSq; ð20Þ

where h is the angle between the normal unit vector of q
and the ray. The summation on dXq is made only on the
2p solid angle containing the calculation domain. When q

is an elementary volume and j an elementary surface, Amqj

is defined by

Amqj ¼
1

4pV q

Z
V q

Z
4p

XNp

c¼1

sm BF cð Þemj dXq dV q ð21Þ

and, when both cells q and j are elementary surfaces, Amqj is
defined by

Amqj ¼
1

pSq

Z
Sq

Z
2p

XNp

c¼1

sm BF cð Þemj cos hdXq dSq. ð22Þ

Eqs. (18) and (19) imply that, for a large number of optical
paths,

CqAmqj ¼ CjAmjq. ð23Þ
Equations similar to Eqs. (8), (9), (15) and (16) can be ob-
tained by replacing 4pVqjmq by Cq and 4pVjjmj by Cj. From
these equations, Eq. (17) can be deduced whatever the type
of the cells q and j.
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